
Service Advertisement and Discovery in
Large Scale Multi-Agent Systems

Junwei Cao
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

junwei@dcs.warwick.ac.uk

Darren J. Kerbyson
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

djke@dcs.warwick.ac.uk

Graham R. Nudd
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

grn@dcs.warwick.ac.uk

ABSTRACT
To develop large-scale distributed software application using
multi-agent system, many different infrastructures are needed.
Service is becoming one of the most important concepts in
distributed system development. Service advertisement and
discovery have become an essential function to implement these
infrastructures.
In this work, a hierarchical model for coordinating agents is
presented, in which a new protocol for service advertisement and
discovery is embedded that supports dynamic reconfigurab ility
with performance optimisation. A modelling and simulation
environment is developed to aid the performance analysis of the
practical system.

Keywords
Service Advertisement, Service Discovery, Multi-agent System,
and Agent Capability Table.

1. INTRODUCTION
Building large-scale multi-agent systems requires a large amount
of software infrastructure technologies, such as planning,
scheduling, coordination, communication, transport, modelling
and simulation. The two main requirements that make these
problems difficult are scalability and dynamism.

• Scalability: Large-scale multi-agent system may contain
millions of agents. Each agent has its own motivation,
function, resource and environment. They are not
predetermined to work together. How to organise these
agents to cooperate with each other when necessary
becomes very difficult, as they may be distributed in a large
scope and may not be aware of each other.

• Dynamism: The agent can change, from time to time, its
identity, functions, interface, performance and so on. When
an agent moves from one host to another, previous identity
will not work any longer. The functions and performance of
an agent can also vary when its resource and environment
change. High dynamism of the multi-agent system makes
the agent coordination much more d ifficult.

Many tools and infrastructures have been implemented to aid
multi-agent system development. The models and motivations of
these vary from each other. The most recent works include
HiMAT [5], Jackal [4], OAA [13], SIM_AGENT [17], JAFMAS
[3]. None of them focus on the problem of scalability and agent
coordination. Some of the software engineering research on
software architecture [7, 15] and coordination models and

languages [12, 14] have been introduced recently to overcome
agent coordination problems. But most of the architecture styles
and coordination models can not be extended to address the
practical problems like scalability, though they have strict
theoretical bases.

Much of the research on distributed software systems is not
undertaken in the context of agent research. CORBA [11] is
taken as middleware of Client/Server system and aims to
standardise the distributed object management. Jedi [6] is a Java
event-based distributed infrastructure that supports asynchronous
and decoupled communication among active objects. Applying
these technologies into a multi-agent system may result in the
autonomy of agents not being fully considered and the problem of
dynamism not being well addressed.

There are many other kinds of distributed system infrastructures
that are developed, or under development, to overcome the same
difficulties that occur in the research areas such as mobile
computing and home networking. Their models and
methodologies can be exploited, though their target system may
not only be the software system. For example:

• Bluetooth [1]: The Bluetooth protocols allow for the
development of interactive services and applications over
interoperable radio modules and data communication
protocols.

• HAVi [8]: Home Audio-Video interoperability is a
specification for home networks of consumer electronics
devices such as CD players, TVs, VCRs, digital cameras,
and set top boxes.

• JetSend [9]: This technology is an example of a service
protocol that allows devices like printers, digital cameras,
and PCs to intelligently negotiate information exchange
without user intervention.

• Jini [10]: This is a distributed system based on the idea of
federating groups of users and the resources, which can be
implemented as either hardware devices or software
programs.

• Salutation [16]: The Salutation architecture is created to
solve the problems of service discovery and utilisation
among a broad set of appliances and equipment and in an
environment of widespread connectivity and mobility.

• UPnP [18]: Universal Plug and Play is an open network
architecture that is designed to enable simple, ad hoc
communication among distributed devices and services from
different vendors.



Service is considered to be the most important concept within the
above architectures. A service is an entity that can be used by a
person, a program, or another service. All of these architectures
provide protocols for service advertisement and discovery, such
as SDP (Service Discovery Protocol) in Bluetooth, lookup service
in Jini, SSDP (Simple Service Discovery Protocol) in UPnP and
SLP (Service Location Protocol) in Salutation.

The concept of service can also be used in multi-agent system.
Each agent can be viewed as both a service provider and a
consumer. A particular service implementation may require other
services. Agents can work together by federating other agents
that can provide the required services. Some of the service
discovery protocols can not be introduced into multi-agent system
directly. For example, SLP is a non-hierarchical approach to
managing local network resources. Also all of the above
protocols need special entities to implement service
advertisement and discovery, which may not be necessary in pure
distributed software system.

In this work, we give a hierarchical model for coordinating
agents, which is an extension of our work presented in [2]. The
agents are connected in a hierarchy. Each agent is viewed as a
service provider as well as a router between other agents. No
special agent for routing processes is needed. Each agent
maintains its own service directory, which is called the Agent
Capability Table (ACT).

Services can be advertised upwards in the hierarchy until the top
agent is reached. The service information is stored in the ACTs
of the passing agents. Service discovery is implemented by
looking up the ACTs in related agents. Reasoning in an agent
according to both its local ACT and global ACT results in the
right routing process, though agents and services may be
reconfigured dynamically. A formal approach is given to reason
about agent behaviour in a logical way, which is helpful to
understand the system behaviour especially in situations of high
dynamism.

Performance optimisation is used to decrease the connection
times of routing processes and to balance the load of different
agents. For example, global ACTs can be updated by the service
change, or be the agent itself. A modelling and simulation
environment has been developed to aid the performance analysis.
Simulation results are included that show the efficiency of the
optimisation.

The rest of the paper is organised as follows: Section 2
introduces the hierarchical model for multi-agent system. Section
3 describes the agent capability model and the protocol for
service advertisement and discovery. Performance optimisation
and simulation results are given in Section 4. Preliminary
conclusions on this approach are given in Section 5.

2. HIERARCHICAL MODEL
In this section the hierarchical model of the agent system is
introduced as the basis of understanding the service
advertisement and discovery mechanism that is described in the
next section.

The hierarchical model is illustrated in Figure 1. The single type
of the components that composes the system is the agent. There
is no agent that has more special purposes or functions than the

others. Every agent can be the router between the request and the
service. However, in Figure 1 we use different terms to
differentiate the level of the agents. The broker is the agent that
heads the whole hierarchy, which maintains all the service
information of the system. The coordinator is the agent that
heads a sub-hierarchy. Only the leaf-node of the hierarchy is
named as an agent.

B

C

A

A
C

A A
B

C

A

: Broker

: Coordinator

: Agent

Figure 1. Hierarchical Model

In the hierarchical model, when a new agent wants to join the
system, it will broadcast to find its nearest existing agent. An
agent can only have one upper agent to register with and be
registered by many lower agents. All the requests that enter a
sub-hierarchy must arrive at the coordinator of the sub-hierarchy
first and then be dispatched to the lower agents. From the view
of service providers, a sub-hierarchy is the same as an agent.

If an agent has the required service information, it can contact
the target agent directly. Otherwise, it must ask its upper agent
to discovery the agent that can provide the service. The upper
agent can also ask other agents for assistance until the service
information is finally found and returned to the original agent.
The agent can then connect directly to the target agent to ask for
the service. All the connections between the agents are broken
after the task is finished.

All the agents are able to change their services from time to time.
The identity of an agent may also change when it moves from
one host to the other. The dynamism increases the difficulty of
service discovery.

The most essential problem is how an agent advertises its
services and coordinates with the other agents to find the
required services in the most efficient way. The efficiency of the
process is mainly up to the number of the connections, since the
amount of data communication is very small. The protocol for
service advertisement and discovery is discussed below.

3. SERVICE ADVERTISEMENT AND
DISCOVERY
In this section, we discuss on how services are advertised and
discovered in the multi-agent system with the above hierarchical
model. The concept of ACT is introduced and service
advertisement and discovery processes are described
respectively. A formal approach is provided to understand the
system behaviour more clearly.

3.1 Agent Capability Table
In order to coordinate the agents to find the services, two kinds
of Agent Capability Tables (ACTs) can be used in each agent to



record the details of the services and their information, which are
local ACT (L_ACT) and global ACT (G_ACT).

• L_ACT. Each agent has one L_ACT to record the service
information about itself and the agents registered with it.
These services can be taken as the capabilities of the agent.

• G_ACT. An agent may have a copy of L_ACT of its upper
agent, which is called G_ACT. An agent can have the
information of much more services and contact them directly
without submitting the request to the upper agent. The
broker of a system need not maintain the G_ACT. G_ACT
is added because it can optimise the performance of the
system. Performance issues will be discussed in greater
detail in Section 4.

Items in the ACT can include: the agent identity, service name
and service attributes. The processes of service advertisement
and discovery are the processes of maintaining and looking up
the ACTs.

3.2 Service Advertisement
A change of a service includes adding a service, remove a service
or update the attributes of a service. When a change of a service
occurs, the agent will advertise the change to the whole system.
It will contact the upper agent to inform the change. The change
will continue to be submitted until it reaches the broker. When
an agent receives a report of service change, it will update the
items in both the L_ACT and G_ACT.

The mobility of the agent can also cause the service change,
because it means that the identity of the agent is changed. When
an agent wants to move away from a host, it must firstly
advertise to delete all service information it maintains in its
L_ACT including those provided by its lower agents. When the
agent moves to a host, it must first broadcast to find an upper
agent to be registered with and then advertise its services via the
upper agent.

G_ACT can be updated from time to time. There are several
ways that the contents of the G_ACT can be updated according to
different situations to achieve performance optimisation:

• The update of the G_ACT can be driven by the service
change. When the broker receives a change report, it can
broadcast it down to the lower coordinators or agents to
update their G_ACTs.

• An agent can ask for its upper agent to update its G_ACT,
which is not driven by service change. The update frequency
can be adjusted.

• G_ACT can also be taken as the cache of an agent. In this
case, service advertisement happens during the service
discovery process. When a service is discovered, the routing
agents can record the search results for oncoming requests.

3.3 Service Discovery
The process for service discovery is much more complex than the
service advertisement, especially when the dynamism of the
system increases.

When an agent receives a request, it will first look up its
L_ACT. If the agent can provide the service itself, it will return
its identity. If the agent finds that one of its lower agents can

provide the service, it will dispatch the request to the agent.
Otherwise, if the agent can not find the service information in its
L_ACT, it will look up its G_ACT (If the agent is the broker of
the system, it will return that there is no service in the system). If
G_ACT shows that the agent itself or its lower agents can
provide the service, there must be something wrong with the
system, because local service information should always be
updated simultaneously in L_ACT and G_ACT. If G_ACT shows
that another agent can provide the service, it will dispatch the
request to that agent, though the route may be w rong. If the agent
can not find that agent or there is no information at all in the
G_ACT, the agent will ask its upper agent for help. After the
upper agent returns the result, it can update its G_ACT and
return the result to the agent who originated the request.

All the agents act the same during the service discovery process.
The behaviour of the whole system may become very complex
because of the dynamism of the system. We provide a formal
approach to describe the service discovery process more clearly
using rule-based reasoning (see Section 3.4 below).

3.4 Formal Approach
The formal representation of the problem is summarised in Table
1, which includes the definitions of agents, evaluations, and
processes. This is the basis for the rule-based reasoning of
system dynamic processes.

Agents A i, (i=1,��,n ), one of the agents
s , a given service request

Evaluations l(s) , evaluation result of s in L_ACT
g(s) , evaluation result of s in G_ACT
l(s), g(s) ∈{A i (i=1,��,n), null}
null means no service information is
available for the request s

Processes A i(s) , A i processes the request s

Table 1. Formal Representation

We represent the process for an agent to require a service in a
logical way. The rules show the routes for a request from the
original agent to reach the target agent though the required
service can be changed dynamically. Several basic rules are used,
which formalise the service discovery process described in the
last section.

• Rule 1 : A i(s) ⇒ A i → (l(s), g(s)) Ai

• Rule 2 : (A this *) this ⇒ ServiceFound

• Rule 3 : (A lower *) this ⇒ A lower (s)

• Rule 4 : (null, A another ) this ⇒ A another (s) / A upper (s)

• Rule 5 : (null, null) this ⇒ A upper (s)

• Rule 6 : (null) broker ⇒ NoService

These rules can be organised together to reason the route for a
service discovery process. An example is used below to illustrate
the formal approach.

The example shown in Figure 2 is a simple system with three
levels. Consider a typical process: A 1 sends a request, s , and the
service can be provided by A 3 . But A 3 just moved from
coordinator C 2 to C 3 , changed its identity to be A 4 , and the



G_ACTs of these agents have not been updated in time.

B
1

C1 C2 C3

A1 A2 A3 A4

��

��

Figure 2. Example System

The equations are shown below. For each step, the evaluation
results of all of the ACTs to the request s replace the
correspondent parts, (l(s), g(s)) Ai , in the process automatically.
The number at the end of each line indicates the rule used for the
transformation.

1
,11 Anull)(nullA(s)A →⇒ (1)

(s)CA 11 →⇒ (5)

12,11 C)C(nullCA →→⇒ (1)

)(211 sCCA →→⇒ (4)

2
),(211 CnullnullCCA →→→⇒ (1)

)(211 sBCCA →→→⇒ (5)

BCBCCA ,*)3(211 →→→→⇒ (1)

)(3211 sCBCCA →→→→⇒ (3)

3
),4(3211 CnullACBCCA →→→→→⇒ (1)

)(43211 sACBCCA →→→→→⇒ (3)

4
,*443211 A)(AACBCCA →→→→→→⇒ (1)

ndServiceFouACBCCA →→→→→→⇒ 43211 (2)

Five connections are needed for the A 1 to find the required
service in A 4 . In the G_ACT of C 1 the service is still recorded to
be within the capability of C 2 . C 2 still has to take part in the
routing process. The routing process can be simplified if C 2 can
cache this routing result or the G_ACT of C 1 can be updated
some time later.

The system can have more than three levels and the services may
be changed many times. The system behaviour for service
discovery may become much more complex. The formal approach
will be more helpful to reason and understand the system
behaviour. Modelling and simulation tools can be developed to
estimate the system performance, as introduced in the next
section.

4. PERFORMANCE ANALYSIS
Performance is the most important issue to study the service
discovery in multi-agent systems. In this section, several
performance optimisation strategies that can be used in the
system are introduced. A modelling and simulation environment,
which can be use to aid the performance analysis, is illustrated
through a simple experiment.

4.1 Performance Optimisation
What the user may be concerned the most about the system is
response time and load balancing. The response time for a
request is mainly up to the connection times between the agents.
Load balancing aims to keep the system stable and one agent can
not have too many connections at one time with others. There are
several strategies that have been used in the system to optimise
the performance.

Hierarchy itself is a kind of performance optimisation that
assumes local services are more often required by the local
agents. Then local requests need less connection times because
higher level agents need not take part in the routing process. The
system load is also reduced.

Adding G_ACT to each agent is also a strategy of performance
optimisation on that assumes the system is stable with no service
change in most of its running time. The number of the
connections may reduce greatly using the G_ACT, though
sometimes dynamism may cause more connections in the routing
process as shown in the example in Section 3.4. G_ACT is very
important on load balancing. Using the G_ACT, a request need
not be submitted to the upper agent, which can easily become the
bottleneck of the system when it has many lower agents.
However, the cost is that updating G_ACTs may increase the
system load especially using service change driven updating. For
some services that are required more often, service change driven
updating can be used; For some services that are only used by a
small group of agents, agent driven updating can be used. An
agent can select a suitable time to update the service information
according to its own load.

Caching the previous service discovery results is a good strategy
for performance optimisation that assumes the same request may
be required more than once. G_ACT can be taken as the cache of
the agent. The first time an agent receives a request, if the agent
has no the service information either in L_ACT or G_ACT, it
must contact the upper agent for help. The returned result can be
stored in G_ACT. If the agent receives the same request, it will
not need to request the upper agent again.

4.2 A Modelling and Simulation Tool
The system behaviour will become complex when the different
performance optimisation strategies are used in a practical
system. It is helpful to model and simulate the performance of
the service discovery of the system in advance. A tool has been
developed using Java. Figure 3 shows an example use of this
tool.

The tool can be used to model the practical system. It abstracts
an agent to be a request sender and a service provider with
unique identity. The user can add, edit and delete agents from
the model via the GUI. The model can also be saved and
reloaded for reuse later. An agent can send different requests at
different frequencies. The process of service advertisement is
finished during the modelling process. In the left column of the
GUI, all of the agents are listed. The brief description of the
selected agent is also shown below the agent list. The text field
above the agent list can be used to search an agent by its name.
The simulation of the service discovery includes the routing
processes and the updating of the G_ACT.



When the model is started to simulate the service discovery of
the system, a thread is created to calculate the related statistical
data step by step. The outgoing and incoming connection times of
an agent in one step are shown above and below the agent name
respectively to indicate the load of the agent. The statistics of the

number of requests, the number of connections and the ratio of
requests and connections in each step and all steps are shown in
the right column of the GUI. Figure 3 also shows a simple model
and its simulation results, which is explained below.

Figure 3. A Performance Modelling and Simulation Environment for Service Discovery

4.3 A Case Study
A simple multi-agent system model is shown in Figure 3,
containing 16 agents. The whole system is configured to have
only one service named Mail . The agent that can provide the
service is Diamond (this is not shown in Figure 3) previously
connected to Jim and later, during the simulation, is moved to
connect to Sun with a new identity Gold . All the other agents
may or may not request the Mail service with different
frequency.

The right column shows the simulation results for 261 steps. A
step can be designed as an arbitrary number of seconds. The
G_ACT updating frequency is fixed on 1 time every 30 steps for
all of the agents. The third curve, titled �Requests/Connections
in Each Step (*100)�, shows the effect of the agent mob ility,
which causes service changes, most clearly. In the first 40 steps,

not all of the G_ACTs of the agents are updated, so the ratio is
rather low, which means that for one request more connections
are needed for service discovery. After about 40 steps, the curve
begins to be stable in a higher position. All G_ACTs of the
agents have been updated and there are no service changes, so
the system runs in a stable mode with high efficiency. On the
100 th step or so, the mentioned agent movement happens. The
connections to discover the service increases at once and the ratio
decreases because all of G_ACTs have not been informed of the
service change in time. More connections are needed in routing
processes. After a further 40 steps, the system enters the stable
mode again but with a higher efficiency. This is because Sun is
the head of a much larger sub-hierarchy than Jim is. When the
service is moved, more requests become local instead of remote,
which reduces the routing connections.



There are many other kinds of experiments that can be done
using this tool to test the efficiency of different strategies to
optimise performance.

5. CONCLUSIONS
The methodology for building large-scale multi-agent system is
important in putting the agent technologies into practice. The
dynamism of the system must be considered, which may increase
the complexity. Service advertisement and discovery is one of the
most essential infrastructures to support the agent system
operation, which can be seen from many other kinds of
distributed systems that are being developed in the areas like
mobile computing and home networking.

In this work, we use a hierarchical model for a multi-agent
system. The service directory is maintained in each agent along
the hierarchy in the format of the ACTs. The processes for
service advertisement and discovery are the processes of editing
and searching the ACTs. Dynamism leads to the complexity of
the system behaviour. A formal approach is also provided to
reason about the system behaviour using computational logic.

Performance issues are important consideration of the system
developer. For the processes of service discovery, good
performance means short response time and load balancing.
Many strategies for performance optimisation can be used in the
practical system. A modelling and simulation tool has been
developed to aid performance analysis before the real system is
built. Different system models and performance optimisation
strategies can be tested using the tool in advance.

A Java or C++ infrastructure can be developed using the model
and service discovery protocol described in this work in the
future. The APIs can be provided to the practical system
developers to ease the development processes. Other developers
of large-scale multi-agent system infrastructures may also use the
service advertisement and discovery infrastructure presented
here.

6. REFERENCES
[1] Bluetooth. �Bluetooth Protocol Architecture Version

1.0�, Bluetooth White Paper, 1999,
http://www.bluetooth.com/.

[2] J. Cao, D. J. Kerbyson, and G. R. Nudd, �Dynamic
Application Integration Using Agent-Based
Operational Administration�, in Proc. of 5 th Int. Conf.
on Practical Application of Intelligent Agents and
Multi-Agent Technology, Manchester, UK, pp. 393-
396, 2000.

[3] D. Chauhan, and A. D. Baker, �JAFMAS: A
Multiagent Application Development System�, in
Proc. of 2 nd Int. Conf. on Autonomous Agents,
Minneapolis/St. Paul, pp. 100-107, 1998.

[4] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng,
and I. Soboroff, �Agent Development with Jack al�, in
Proc. of 3 rd Int. Conf. on Autonomous Agents, Seattle,
Washington, U.S.A., pp. 358-359, 1999.

[5] M. Cremonini, A. Omicini, and F. Zambonelli,
�Modelling Network Topology and Mobile Agent
Interaction: An Integrated Framework�, in Proc. of
the 1999 ACM Symposium on Applied Computing,
The Menger, San Antonio, Texas, U.S.A., pp. 410-
412, 1999.

[6] G. Cugola, E. D. Nitto, and A. Fuggetta, �Exploiting
an Event-based Infrastructure to Develop Complex
Distributed Systems�, in Proc. of 20 th Int. Conf. on
Software Engineering, Japan, pp. 261-270, 1998.

[7] D. Garlan, and M. Shaw, �An Introduction to
Software Achitecture. Advances in Software
Engineering and Knowledge Engineering�, New
York: World Scientific, Vol. 1, 1993.

[8] HAVi, �Specification of the Home Audio/Video
Interoperability Version 1.0�, The HAVi
Specification, 2000. http:// www.havi.org/.

[9] JetSend, http://www.jetsend.com/.

[10] Jini, �Jini Architectural Overview�, Sun Technical
White Paper, 1999.

[11] S. M. Lewandowski, �Frameworks for Component-
Based Client/Server Computing�, ACM Computing
Survey, Vol. 30, No. 1, 1998.

[12] T. W. Malone, and K. Crowston, �The
Interdisciplinary Study of Coordination�, ACM
Computing Survey, Vol. 26, No. 1, 1994.

[13] D. B. Moran, A. J. Cheyer, L. E. Julia, D. L. Martin,
and S. Park, �Multimodal User Interfaces in the Open
Agent Architecture�, in Proc. of the 1997 Int. Conf.
on Intelligent User Interfaces, pp. 61-68, 1997.

[14] G. Papadopoulos, and F. Arbab, �Coordination
Models and Languages. In Advances in Computers�,
Vol. 46: The Engineering of Large Systems,
Academic Press, 1998.

[15] D. E. Perry, and A. L. Wolf, �Foundations for the
Studies of Software Architecture�, ACM SIGSOFT
Software Engineering Notes, Vol. 17, No. 4, 1992.

[16] Salutation, �Salutation Architecture Specification
Version 2.1�, The Salutation Consortium Inc., 1999,
http://www.salu tation.org/.

[17] A. Sloman, and B. Logan, �Building Cognitively Rich
Agents Using the SIM_Agent Toolkit�,
Communications of the ACM, Vol. 42, No. 3, pp. 71-
77, 1999.

[18] UPnP, �Universal Plug and Play Device Architecture
Reference Specification Version 0.90�, Microsoft
Corporation, 1999. http:// www.upnp.org/.


